Package: kknn 1.3.3
kknn: Weighted k-Nearest Neighbors
Weighted k-Nearest Neighbors for Classification, Regression and Clustering.
Authors:
kknn_1.3.3.tar.gz
kknn_1.3.3.zip(r-4.5)kknn_1.3.3.zip(r-4.4)kknn_1.3.3.zip(r-4.3)
kknn_1.3.3.tgz(r-4.4-x86_64)kknn_1.3.3.tgz(r-4.4-arm64)kknn_1.3.3.tgz(r-4.3-x86_64)kknn_1.3.3.tgz(r-4.3-arm64)
kknn_1.3.3.tar.gz(r-4.5-noble)kknn_1.3.3.tar.gz(r-4.4-noble)
kknn_1.3.3.tgz(r-4.4-emscripten)kknn_1.3.3.tgz(r-4.3-emscripten)
kknn.pdf |kknn.html✨
kknn/json (API)
NEWS
# Install 'kknn' in R: |
install.packages('kknn', repos = c('https://klausvigo.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/klausvigo/kknn/issues
Datasets:
- glass - Glass Identification Database
- ionosphere - Johns Hopkins University Ionosphere Database
- miete - Munich Rent Standard Database
Last updated 4 years agofrom:3becbeb277. Checks:7 OK, 2 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 20 2025 |
R-4.5-win-x86_64 | NOTE | Jan 20 2025 |
R-4.5-linux-x86_64 | NOTE | Jan 20 2025 |
R-4.4-win-x86_64 | OK | Jan 20 2025 |
R-4.4-mac-x86_64 | OK | Jan 20 2025 |
R-4.4-mac-aarch64 | OK | Jan 20 2025 |
R-4.3-win-x86_64 | OK | Jan 20 2025 |
R-4.3-mac-x86_64 | OK | Jan 20 2025 |
R-4.3-mac-aarch64 | OK | Jan 20 2025 |
Exports:contr.dummycontr.metriccontr.ordinalcv.kknnkknnkknn.distsimulationspecClusttrain.kknn
Dependencies:clicpp11glueigraphlatticelifecyclemagrittrMatrixpkgconfigrlangvctrs
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Weighted k-Nearest Neighbors Classification and Clustering | kknn-package |
Contrast Matrices | contr.dummy contr.metric contr.ordinal |
Glass Identification Database | glass |
Johns Hopkins University Ionosphere Database | ionosphere |
Weighted k-Nearest Neighbor Classifier | kknn kknn.dist predict.kknn print.kknn summary.kknn |
Deprecated Functions in Package kknn | simulation |
Munich Rent Standard Database (1994) | miete |
Spectral Clustering | plot.specClust specClust |
Training kknn | cv.kknn plot.train.kknn predict.train.kknn print.train.kknn summary.train.kknn train.kknn |